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Summary.  A new method for giving cycle indices is presented for combinatorial 
enumeration. Thus, cyclic groups are characterized by markaracter tables, the elements 
of which are determined by the orders of their subgroups. A set of such cyclic groups 
(defined as dominant subgroups) is used to characterize a group G of finite order, 
where the markaracter table for the group G is constructed with respect to dominant 
representations (DRs), which are defined as coset representations corresponding to the 
dominant subgroups. By starting from the markaracter table, we propose an essential 
set of subdominant markaracter tables and a magnification set for the group G; the 
latter concept clarifies the relationship between each subdominant markaracter table 
and the markaracter table of a dominant subgroup. The subduction of DRs is obtained 
by the markaracter table to produce a dominant subduction table and a dominant USCI 
(unit-subduced cycle index) table. The latter is used to evaluate a cycle index to be 
applied to combinatorial enumeration. The cycle index is shown to be equivalent 
to the couterpart of our previous approach concerning both cyclic and non-cyclic 
subgroups. The latter, in turn, has been proved to be equivaltent to the cycle index 
obtained by the Redfield-P61ya theorem. 
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1. Introduction 

The Redfield-P61ya theorem has been a standard method for combinatorial enumer- 
ation in chemistry as well as in mathematics [ 1, 2]. This method uses a cycle index 
as a key concept to evaluate isomer numbers. The cycle index is a polynomial which 
contains a term determined for each conjugacy class. Other approaches that create 
a cycle index equivalent to the Redfield-P61ya theorem have been proposed; e.g. a 

doube-coset method by Ruch et al. [3] and a method using mark tables [4]. We have 
reported the USCI approach and an alternative formulation of the cycle index [5]. Our 
cycle index is determined on the basis of unit subduced cycle indices (USCI) which 
correspond to conjugate cyclic subgroups. Although we also take account of terms 
concerning non-cyclic subgroups, these terms vanish in the process of calculating a 
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cycle index. If we focus on the relationship between conjugacy classes and conjugate 
cyclic subgroups, our previous formulation can be simplified so that we use conjugate 
cyclic subgroups only. In the preceding article, we have discussed dominant represen- 
tations (DRs) based on such cyclic subgroups. We here deal with several properties 
of markaracter tables and with subduction of DRs. The final target of this article is 
to propose a novel formulation of combinatorial enumeration as a simplified USCI 
approach. 

2. Essential set of subdominant markaracter tables 

2.1. Markaracter tables for cyclic groups 

In the preceding paper, a group Gj of finite order is characterized by a markaracter 
table. When the group Gj is a cyclic group, the markaracter table of Gj is equal to 
its mark table. Moreover, each subgroup of Gj is a cyclic subgroup whose order is 
equal to a divisor of [Gj I. 

Let Gj be a cyclic group. The group Gj has a non-redundant set of cyclic sub- 
groups, i.e., 

SCSG% = {G1 ~), G(d)2 , ' - ' ,  G~)}, (1) 

where the group G~ d) is an identity group and Gr U) is identical with Gj istself. 
Since the group Gj is cyclic, the normalizers of its subgroups are identical with 

each other, i.e., 

NG~ (G~ j)) = NG~ (G2 ~)) . . . . .  N% (Gr ~)) = Gj. (2) 

When we focus our attention on a cyclic group, Theorems 2 to 5 in the preceding 
article are summarized into the following simple lemma, 

Lemma 1. The dominant markaracter (i.e. the k-th row of the markaracter table) of 
the cyclic group Gj is represented by 

(4) rx(J) x(d) (J) (J) (J) % ( / %  ) = , )~kg, 

(~(J) ~(J) (J) (J) = ~"kl,"k2,''" ,'~ke,''" ,)~kk,O, ''" ,0), (3) 

where each element is expressed by 

IGjl for G~J)(_< G (d)~ 
),kc ~ = = ~ k , 

0 for Ge~)(~ G~ )) 

(4a) 

(4b) 

forg= 1 ,2 , . . . , k .  

Such markaracters construct a markaracter table for the cyclic group Gj. Thus, we 
have MGj = (Ake) as a lower triangular r × r matrix. 

The following markaracter tables for C2, C~, C3, and $4 exemplify Lemma 1. 
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J, El J. C2 

b]lc2 C2(/C1) ( 2 0 ) 
---- C2(/C2) 1 1 

I c 1  $C~ 
Cs(/C1) ( 2 0 ) 

gic~ = c~( /c~)  1 1 

~CI IC3  

1~Ic3 C3(/C1) ( 3 0 ) 
= C3(/C3) 1 1 

J, C1 $ C2 
S4(/Ci) [ 4 0 

/~$4 = 84(/C2) ~ 2 2 
S4(/84) 1 1 

,L 84 O) 
o 
1 

(5) 

(6) 

(7) 

(8) 

Since the markaracter table (IVIG~ (J) = (Ake)) of the cyclic group Gj is a lower 
- - 1  = (~-~) 

triangular matrix, the corresponding inverse (MGj Aek)) is also lower triangular. 

The elements of MG~ are evaluated by the following lemma using the MSbius function. 
- - I  

Lemma 2. The k-th colomn o f  the inverse MGj for  the cyclic subgroup Gj  is repre- 
sented by 

( j )  T . ~ )  ~ ( J )  - '~J)  ~ )  ~ ( J ) . T  
Gj(/Gk ) = tAlk,A2k,... , e k , . . . , A k k , . . . , A r k )  

(0 , . . .  - ~J) ~-o) ~) x(JhT (9) 
= ~ U~ A k k ~  A k +  1,k~ " " " ~ )~gk '  " " " ' " ' r k ;  

where each element is expressed by 

(5) ( IG~'l ~ <J' 
IGk I for  Ge~)(> G Oh (10a) 

]e~k)= = t U \ t c _ T G ]  l-i-~'TTji - k ,  

= 0 for  G~)(Z (j) G k ) (10b) 

for  g = k, k + l, . . . , r. 

Proof. Let/z(n) be the MSbius function of integer n. Since the matrices at issue are 
lower triangular, the multiplication of the g-th row of lVlG~ by the k-th colomn of the 

inverse MGj gives a non-diagonal element, which vanishes into zero as represented 
by 

• . T = I G j I ~  ( I G T , , ' I ' ~ I G ~ ) I  
Gs(/GT))G3(/G7 )) IGT) ~ :  V it IGT) I ) IGsl 

IGjl IG~)I # {IG~"I'~ 

_ IG~)I 
IG~) ~ / ~ ( d )  = O, (11) 

Idln 
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~(~) IGOr) I i--£1 i where d = ~ is a divisor of n = IG~ and the summation designated by din runs 

over all of the divisors (d) of n. Each diagonal element is calculated to be 

[Gj] { ]G~ )] "~ ]G~)I 

]G(k j)----~ × # ~ k ~ ]  ]Gj] = 
1. (12) 

Equations 11 and 12 mean that MGj is inverse to MG~. [] 
N - -  1 

The elements involved in MGj reveal a property of the MSbius function. Thus, 

the summation of the elements appearing in the k-th column of MGj is represented 
by 

r 

g=k 

, , ]Gk I _ ]G~ )] { ]G~)] '~  

e=k I Gk I I G j l  I e=k 

_ IG~)I 
IGyl Z P ( d )  = O, 

din 

(13) 

IG~ I and the summation designated by din runs where d = ~ is a divisor of n = 16~ 

over all of the divisors (d) of n. 
On the other hand, the summation of the elements in the g-th row reveals the rela- 

tionship between the MSbius function and the Euler function. Thus, it is representated 
by 

e e i ~) e iG~) l~  

k=l k:l ~,lGkO) I ] IGjl IGjl : 

_ W I ~ I 

IGjf 
(14) 

Note that each IG~)[ is a divisor of [G~)I or there appears a zero entry for the row. 
Equations 13 and 14 are summarized as a theorem as follows, where the ranges 

of the summations are rewritten by taking zero entries into consideration. 

- - - - 1  = ( - ~ ( j ) .  
Theorem 1. The elements in the k-th comolun of MG~ ek) for the cyclic group 
Gj are summed up to vanish into zero, i.e., 

r 

g = l  

(15) 

- - 1  = (X~:) for the cyclic group Gj are summed The elements in the g-th row of Ma~ 
up to give 

,~ek - (16) k=i IGjl 
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2.2. Subdominant markaracter tables for dominant subgroups 

In the treatment described in the preceding article, we select an appropriate set of rows 
from the markaracter table of a group G so as to construct a subdominant markaracter 
table of its subgroup Gj which may be cyclic or non-cyclic. In this section, however, 
we consider a cyclic subgroup Gj of G. This treatment allows us to prove that each 
row of the markaracter table can be constructed from the date of the corresponding 
cyclic subgroup. 

The group G is characterized by a non-redundant set of subdominant represen- 
tations (SSDR), which are represented by G ~ Gj( /G~ )) for j = 1 ,2 , . . . ,  s. Each 
subdominant representation (SDR) corresponds to a subdominant markaracter, the el- 
ements of which are selected from the corresponding markaracter table. This process 
is permitted on the basis of Theorems 17 and 18 of the preceding paper. Thus, we 
have a subdominant markaracter, G ~ Gj(/G~)), which is identical with eq. 63 of the 
preceding paper. Such subdominant markaracters are collected to form a subdominant 

markaracter table (SDMT), which is a lower triangular matrix (MGIGj), as shown in 
the preceding paper (eq. 64). 

Example 1. The group Td has a markaracter table (l~Td), which is identical with 
Table 2 of the preceding paper. For constructing subdominant mark tables, we select 
the elements of respective cyclic subgroups. 

,L C1 .L C2 
Td~C2(/C1) ( 24 0 ) 

MTdiC2 = Td ~ C2(/C2) 12 4 

: Td,LCs(/Ca) ( 24 0 ) 
MTd,LCs = Td,L Cs(/C~) 12 2 

IC1 IC3 
: Td~.C3(/C1) ( 24 0 ) 
MTdSC3 = Ta I C3(/C3) 8 2 

,L C1 ,L C2 ,L 54 
: Ta ,L S4(/C1) / 24 0 0 
MXd~S, = Ta ~. 84(/C2) ~ 12 4 0 

Ta I S4(/84) 6 2 2 
) 

(17) 

(18) 

(19) 

(20) 

These subdominant markaracter tables are compared with the dominant markaracter 
tables of the respective cyclic subgroups. By inspection, we are able to obtain diagonal 
matrices to change the latter to the former. The diagonal matrices are called the 
magnification set of the group G, since they are uniquely determined if the group G 
is given as proved below. 

21 0 12 24 0 
1 ) ( 0  ~)  = (12 4 )  (21) 

2 24 0 

(31 0 ) ( 8  ~)  = (24 ~)  (23) 
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(i ° ° ) ( i  : ° i) 4 (24) 

The sencond matrix in the left-hand side of each equation is the magnification 
of the subgroups at issue. The above discussion can be extended to general cases, 
since we have evaluated the elements of a markaracter table (Theorems 2 to 5 of the 
preceding paper). Thus, we have the following lemma. 

Lemma 3. Let m(~) k be the element of the subdominant markaracter table for G ~ Gj, 

i.e., 1VIGtGj. Suppose that the element corresponds to the element Ae(~ of the markar- 
acter table of  the subgroup Gj. When g moves k to r (i.e. over the kth column), we 
have 

m(~) ING(G~))I 
~k _ (g = k , k  + 1 , . . . , r )  

~) IGjl gk 

for respective non-zero elements. 

Proof. We have the ratio for the diaganonal entry of the k-th column, 

(J) (/) (J) ING(Gk )1 / INGj(Gk )I ING(G~))I mkk 

[Gk[ / IGkl I ~ 1  

(25) 

(26) 

We then obtain the ratio for the entry at the intersection between the k-th column and 
the g-the row, 

re(i) ING(G~))I /INGj(G~2)I ]NG(Ge~))I 
£k _ 

"'ek x(j) ~ / IG~)I  [NGj(G~))I 

Since Gk and Gt are cyclic groups of Gj, we have 

NG(Ge ~)) = NG(G k(j)), N(;~(G (j)) = NG~ (G~)) = Gj 

These relationships allow us to equalize eqs. 26 and 27. 

m(J)kk_ ra~ ) [NG(G~))I (g = k,k+ 1 , . . , r ) .  

(27) 

(28) 

(29) 

[] 
In the light of this lemma, we define a magnification as a diagonal matrix repre- 

sented by 

IGJl [NG(G~))[ 

Lee: TG = [Gjl (30) 

O ING(G~)) I 

Then we have a theorem that allows us to construct a subdominant markaracter table 
from the markarcter table of the corresponding subgroup. 
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N 

Theorem 2. Let Mcj be the markaracter table of the cyclic group Gj. Suppose that 

MG~Gj is the SDMT produced from MG. When we use the magnification represented 
by LcjTG (eq. 30), we have 

MG;a~ = Ma~LG~Ta, (31) 

or inversely, 
..~ --1 --1 ~ --1 
MG~Gj = LGjTGMGj (32) 

The resulting subdominant markaracter table (SDMT) is a part of the markaracter 
table of the group G. 

Let G be a cyclic group. The group G has a non-redundant set of cyclic subgroups, 
i .e .~  

SCSGG = {G~, G2 , . . . ,  G j , . . . ,  Gs}. (33) 

Each subgroup Gj corresponds to eq. 31. This means that the group G is characterized 

by a set of dominant markaracter tables (I~IGj) and a set of magnifications (LGj~G). 
They produce a set of subdominant markaracter tables which are in turn collected to 
create the markaracter table of G. 

2.3. Induction and magnification 

Let H be a non-cyclic subgroup G. The group H is characterized by a set of dominant 
N 

markaracter tables (Miaj) and a set of magnifications (LnsTH), where //3- runs over 
the SCSG for H: 

SCSGG = {HI, H 2 , . . . ,  H i , . . . ,  H,,}, (34) 

which is a subset of SCSGG (eq. 33). Theorem 2 for this case is represented as 
follows. 

/VIHj Lrij TH = MH+H~ • (35) 

Since H is a subgroup of G, we can partly characterize the group G by a set of 
N 

dominant markaracter tables (Mri~) and a set of magnifications (LnjTc), where Hj  
runs over the SCSG of eq. 34. These sets are subset of the corresponding ones for 
full characterization described above. Thus, we have 

N 

MHjLH~Tc =MGIH3. (36) 

Equations 35 and 36 give a theorem. 

Theorem 3. 

Mc~Iaj = MnIHjLn~TnLnjTG 

: t V I H , L H  j L , H ) "  G 

(37) 

(38) 

where the maginfication ~nTG ~(j) is substituted for Ln~TnLn j .  TG. 
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The resulting maginifcations from H to G(i.e. (J) LHT G for j = 1 ,2 , . . . ,  u) are diagonal 
matrices. It follows that 

LH~ TG = LH~ THLH~G. (39) 

Since the concrete forms of LHjTH and LHjTG are obtained by using eq. 30, we have 

INH (G(IJ))I 
ING(G~J))I 
INH(G~J)) I 

0 

0 

/ ' (40) 

) ING(G~))I 
I N H ~  

where the cyclic group Gj is a subgroup of H. 

Example 2. For example, markaracter tables for cyclic subgroups Cs and C3 are 
magnified into those for Td via those for C3v as follows, where matrices on arrows 
represent maginifcations. 

(~ o) ~v (~ o) T~ 
1) (36 0) (~4 0) (41a) 

(~ o) ~ (4 o) T~ 
C3 " (3  0 ~ 6 1 1) (2 0) (24 ~)  (41 a) 

[] 

Example 3. Let us next consider markaracter tables for cyclic subgroups C2, Cs and 
Sn are magnified into those for Ta via those for D2d, where two non-conjugate groups 
are fused into the subgroup C2 of Ta. 

0 ) 24 

0 ~ 24 ~: (1 ~ o) (8 ~) (1~ o) ~4~c) ( oo) 
2 D2d 1 0 

(i o!) o (i o o) S4 : 2 ~ 4 0 
1 2 2 

(4 o) o2~ (~ o) Td 
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Td (24 40 ) 2 
(42d)  

It should be noted that the total magnification of C2 into Td is equal to that of 
C~ into Td. [] 

3. Subduct ion  and combinatoria l  enumerat ion  

3.1. Dominant subduction tables and dominant USCI tables 

The subduction of coset representations has been reported in previous papers [6, 7]. 
Dominant representations (coset representaitons for cyclic subgroups) can be subduced 
in a similar way, where the subduction is concerned with cyclic subgroups• Let G j  

be a cyclic subgroup of G, where the markaracter table is represented by MG+Gj. 
Consider a modified mark table of G in which the columns corresponding to Gj 
are gathered into the upperleft part by means of consecutive concurrent interchanges. 
Then, we select the columns corresponding to Gj from the modified mark table to 
give an t x r matrix: 

fiGLGj = 

G(/G1) l Gj 

G(/G2) ~ Gj 

G(/Gk) ~ Gj 

G(/G~) ~ Gj 

G(/Gi)  ~ Gj 

G(/Gs)  1 Gj 

G( /Gt)  1 Gj  

^'~) 
m k l  

r l  

^'@) 
msl  

I G2 @) g,(J) 
• ' * J"  " ~ ' k  " ' "  .L G~ ) 

,ff•(d) 22 

k 2  " " " " ~ k k  

: : " . .  

r 2  " • " " ~ r  k " " " T ~ r r  

: : : : 

. . .  . . .  

: : : : 

. . .  . . .  

: : : : 

, (43) 

where zero values are omitted and Gk is equal to G~ ) for k = 1 , 2 , . . . ,  r. It is easy 
to show that the upper r × r part of the matrix (eq. 43) is identical with the SDMT 

(MGIGj). The rows between r + 1 and s correspond to cyclic subgroups (Gr+l to Gs) 
and the rows between s + 1 and t are assigned to non-cyclic subgroups (G8+1 to Gt). 

Since Lemma 9.1 of Ref. [7] holds for this case, we have 

£=1 

(44)  
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where k = 1 , 2 , . . . ,  r, i = 1, 2 , . . . ,  t (tentatively fixed) and j = 1 , 2 , . . . ,  r (tentatively 

fixed). The term A~) represents the element of the inverse (MGj) of the markaracter 

table lVIGj (J) = (Ake). Note that r depends on Gj though not expressed. When we 
consider the following row vectors, 

G ( / G 0  1 Gj 

G(/Gi)  ~ Gj 

eq. 44 is transformed into 

^ (J) ^(J) ~(J)~ (45) = ( m i l  ~ m i 2  ~ " . . ~ ' t t r i r )  

¢c~(ij) s(ij) • fl(r~J)), (46) 

N - 1  
[G( /G0 ,L Gj]MGj : C-(/G0 J. Gj. (47) 

Theorem 9.1 of Ref. [7] holds for this case, 
~o 

(i j) (j) 
G ( / G 0  ~ Gj = E flk Gj( /Gk ), (48) 

k=l 

where i = 1 , 2 , . . . ,  t (tentatively fixed) and j = 1 ,2 , . . . ,  r (tentatively fixed). 
In order to calculate the subduction multiplicities (/3~iJ)), we here treat the calcu- 

lation in three steps: 

1. The generation of a dominant subduction table and of a dominant USCI table, 
where Gi of G(/Gi)  is cyclic (Case 1). 

2. The subduction of G( /Gi)  in which Gi is non-cyclic (Case 2). 
3. An alternative evaluation of Case 2 from the data of Case 1. 

Let us first consider cyclic subgroups only (Case 1). In other words, we take 
into consideration the first to the s-th row of the matrix 1VIGtGj (eq. 43), where Gj 
runs from j = 1 to s. The calculation of the subduction multiplicities by eq. 44 is 
conveniently conducted by fixing Gj. Thus, we move k of 13~ i j) from 1 to r and the 

i from 1 to s so that we have an s × r matrix, i.e., Bj = (/3(iJ)), which is called a 

subduction-multiplicity matrix. In terms of this definition, we obtain the matrix Bj 
by solving eq. 48, which is explicitly represented as follows. 

~ N -  1 
Bj = M(;I~jMGj , (49) 

where the matrix MG~G~ is the upper s x r part of eq. 43. Note that the i-th row of 

By gives the coefficients for each G ( / G 0  .L Gj. When the j of the matrix Bj runs 
from 1 to s, we have a dominant subduction table of the group G. 

In accord with eq. 48, the unit subduced cycle index (USCI) for G(/Gi)  $ Gj is 
defined as 

r 13(~j) 

Z(G(/Gi) I Gj;sd¢k)= H Sd~k ' (50) 
k = l  

where each subscript is calculated by 

IGjl 
d j k -  ]G~) I • (51) 
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Example 4. Let us evaluate Td(/Gi)  J. S4, where Gi is selected to be C1, C2, Ca, 
C3, and $4. We make a subduced markaracter table by selecting necessary columns 
(Cx, C2, and S4) from the markaracter table of the group Td. The resulting matrix is 

- - 1  
multiplied by the inverse (Ms4) to give a subduction-multiplicity matrix, i.e., 

,L c1 ,L c2 ,L $4 
o 

Td(/C2) 12 4 0 1 0 0 
Td(/S4) 6 2 2 41 1 
Td(/Cs) 12 0 0 _ i  
Td(/C3) 8 0 0 2 

J, C1 .LC2 ,LS4 
Td(/Cl),[S4( 6 0 0 / " 3 6  4 
Td(/C2) ,L 84 2 2 0 s~s 2 

= Td(/S4) ~, 84 1 0 2 8284 (52) 
Td( /Cs)  J. S 4 3 0 0 s 3 
Td(/C3) .~ S4 2 0 0 S34 

The resulting matrix contains the multiplicities for the respective subductions. For 
example, the second row of the matrix means 

Td(/C2) ,~ S4 = 284(/C1)+ 284(/C2), (53) 

which generates a uscI,  8482,2 2 since 1841/ICll = 4 and 1841/1c21 = 2. 
The procedure of this example is repeated for each dominant representation (DR) 

to give a dominant subduction table (Table 1) and a dominant USCI table (Table 
2). [] 

Comparison between eqs. 24 and 52 gives the following relationship: 

(4oo/(!oo)( o i) 
2 2 0 2 0 41 1 2 

1 1 1 1 0 2 - 2  

= 4 -o -- o2 2 - 2  
(54) 

The first matrix in the left-hand side is inverse to the third one. This relationship 
reveals the relationship between the magnification and the subduction multiplicities. 
The relationship is easily extended to a general case. Let B'-'~j = (/3~iJ)), in which k runs 
over the columns from 1 to r and i runs over the rows from 1 to r (3" is tentatively 
fixed). Then, we have 

MGjLGjTGMGj = Bj. (55) 
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Table 1. Dominant subduction table of T d 

Ta(/C1) 
Td(/C2) 

Td(/Cs) 

Td(/C3) 

Td(/S4) 

C1 ~ C2 ~ Ca J. C3 ~ S4 
24C1(/C1) 12C2(/C1) 12C~(/C1) 8C3(/C1) 
12C1(/Cl) 4C2(/C1) 6Cs(/C1) 4C3(/C1) 

+4C2(/C2) 
12C1(/CI) 6C2(/CI) 5Cs(/CI) 4C3(/C1) 

+2G(/G) 
8C1(/C1) 4C2(/C1) 4Cs(/C1) 2C3(/C1) 

+2C3(/C3) 
6C1(/C1) 2C2(/C1) 3Cs(/C1) 2C3(/C1) 

+2C2(/C2) 

6S4(/C1) 
284(/C1) 
+284(/C2) 
3S4(/C1) 

2S4(/C1) 

s4(/c1) 
+2S4(/S4) 

Table 2. Dominant USCI table of T d 

Td(/C~) 
Td(/C2) 
Td(/C,) 
Td(/C3) 
Td(/S4) 

C1 ~ C2 ~ Cs ~ C3 ~ S4 
,324 ,312 ,312 ,3~ ,36 
,3~2 4 4 8,182 ,32 ,34 82 22 ,34 

,31  

+4 

3.2. Subduction of non-dominant representations 

A coset representation which is not a DR is called a non-dominant representation. 
For discussing the subduction of such an non-dominant representation, we consider 
an t x r matrix, Bj (~J) = ( i l k ) ,  in which k runs over the columns from 1 to r and i 

runs over the rows from 1 to t (j  is tentatively fixed). This matrix contains the Bj 
as the upper s rows. 

Then, eq. 44 is transformed into 

Bj = lVlG~GjlVlG~ (56) 

This treatment turns out to take account of  Case 2, if we focus our attention on the h 
(s + 1)-the to the t-th rows of  MGtGj (eq. 43) and on  the corresponding part of B. 
For illustrating the non-cyclic part of  Bj (i j) = ( i l k ) ,  we examine Td(/Gi) J. 84, where 
Gi is a non-cyclic subgroup of  Td. 

Example 5. Let us evaluate Td(/Gi)  ,[ 84, where Gi is selected to be D2, C2v, C3v, 
D2d, T, and Td. We make a subduced markaracter table by selecting necessary columns 
(C1, C2, and S4) from the mark table of  the group Td. The resulting matrix is multi- 

N - -  1 

plied by the inverse (Ms4) to give 
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,L c1 ,~ C2 J, S4 

Td(/C2v) 6 2 0 
Td(/Cav) 4 0 0 
Td(/D2d) 3 3 1 
Ta(/T) 2 2 0 
Ta(/Td) 1 1 1 

,LC1 ,LC2 ,~ 

Td(/D2) J, S4 / 0 3 
Ta(/C2v) ,L $4 / 1 1 
Td(/C3v) ~. S4 1 0 
Td(/D2d ) J. S 4 0 1 
Td(/T) 1 84 0 
Ta(/Ta) 1 84 0 0 

_¼ 1 

1 0 - ~  

84 o) 
0 8284 
0 s4 
1 Sl s2 
0 s2 
1 at 

(57) 

The resulting matrix gives the multiplicities for the respective subductions. For ex- 
ample, the second row of the matrix means 

Td(/C2v) ~. 84 = S4( /Cl)  + 84(/C2), (58) 

which generates a USCI, 8284, since IS41/[Ct I = 4 and IS41/IC21 = 2. The variables 
in the rightmost column of eq. 57 are USCIs for the subduction Td( /G0 I $4. 

The procedure of this example is repeated for each non-dominant representation to 
give a subduction table (Table 3) and a USCI table (Table 4) for non-cyclic subgroups. 

[] 

The last step is to derive Case 2 from the data of Case 1. Let us consider a 
coset representation G ( / G 0  in which Gi is a non-cyclic subgroup of G. Suppose that 
G ( / G 0  is associated with the following markaracter and multiplicity vector: 

G(/GO = (Xl ,X2, . . . ,xs)  (59) 

= (G1,~2, . . . ,Gs).  (60) 

In the light of the discussions described in the preceding article, the latter is obtained 
from the former by means of the equation: 

G(/Gi)M G = A. (61) 

Equations 49 and 61 give 

A Bj 
- I  ~ ~ - I  

G(/Gi)MG MGIG~ MGj 

G ( / G 0  

(1 1 0 

O ,,. 
1 

0 0 . . .  0 

0 0 . . .  0 

Gj 



328 S. Fujita 

Table 3. Subduction of non-dominant CRs for Ta 

Td(/D2) 
Td(/C2v) 

Td(/C3v) 

T d(/D2d) 

Td(/T) 
Td(/Td) 

,L C1 ,~ C2 ~ Cs J. C3 .~ S4 
6C1(/C1) 6C2(/C2) 3Cs(/C1) 2C3(/C1) 384(/C2) 
6C1(/C1) 2C2(/Cl) 2Cs(/C1) 2C3(/C1) S4(/Cl) 

+2C2(/C2) +2Cs(/Cs) +$4(/C2) 
4C1(/C1) 2C2(/C1) Cs(/CI) C3(/CI) $4(/C1) 

+2Cs(/Cs) +C3(/C3) 
3C1(/Cl) 3C2(/C2) Cs(/C1) C3( /C1)  $4(/C2) 

+2Cs(/Cs) +84(/84) 
2C1(/C1) 2C2(/C2) Cs(/C1) 2C3(/C3) S4(/C2) 
Cl(/C1) C2( /C2)  Cs(/Cs) C3( /C3)  84(/S4) 

Table 4. USCIs for non-dominant representations of Td 

Td(/D2) 
Td(/C2v) 

Td(/C3v) 

Td(/D2d) 

Td(/T) 
Td(/Td) 

C1 ~ C2 J. Cs ~L C3 ~ S4 
s6 4 4 82 s~ 
816 22 22 818 2 818 2 8 2 8284 

841 s~ 8282 8183 84 

83 83 SlS 2 83 SiS2 

81 Sl 81 S1 81 

where the middle matrix of  a concrete form is obtained by considering the fact that 
----1 
M G is inverse to the markaracter table !~IG which involves MG~Gj as the left r 

columns. Since the rows from r + 1 to s in the matrix Bj vanish in this process, we 

can use the matrix B'-~ that contains the first to r-th rows of the Bj. The vector A is 

transformed into the restricted one (A~) concerning Gj. It follows that 

. . . .  l 

A'Bj = [G(/G0 ~ Gj]MGj 

= ( ; ( /Gi )  + Gj. (62) 

The last transformation stems from eq. 47. Equation 62 can be transformed into 

an equivalent equation by using ~, and B j, where zero values are added to ~1 for 
regenerating ~.. When we explicitly express the row vectors, we have 

A 

• = ~( , j )  .,~(/)) A ~  = (~1, ~: ,  . . ,  G )  Bj = (~I ij), .. = 5 ( / G i )  l Gj, 

where i = r + 1, r + 2 , . . .  s and j is tentatively fixed. It should be noted that Gi is a 

non-cyclic subgroup of G while A and Bj are concerned with the cyclic subgroup 

Gj. Moreover, Bj (j = 1 , 2 , . . . , s )  creats the dominant subduction table and the 
dominant USCI table. This means that subduction for non-dominant representations 
can be evaluated from the data of the dominant subduction table and of the dominant 
USCI table. We summarizes the result as a theorem. 
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T h e o r e m  4. Suppose that the multiplicity vector A is obtained from G ( / G 0  by eq. 60 

and that the subduction-multiplicity matrix Bj is obtained by eq. 49. Then C,(/G0 
Gj is obtained by calculating 

A Bj = (~1, ~2, • • -, ~s) Bj = (/31/j), "2•(iJ)' "--,/3 (ij)) = G(/Gi) J. Gj, (63) 

for j=  1 ,2 , . . . , s .  

Example 6. From the markaracater Td(/C3v) = (4, 0, 2, 1,0), we have a multiplicity 
vector, 

- - 1  1 0 1 
Td(/C3~) = (4,0,2, 1,0)MTd = ( - 7 '  ' 1, 7,0). (54) 

Thereby, Td(/C3v) .~ S4 is calculated as follows from the data in the S4.column of 
Table t, 

Td(/C3v) I 84 
1 1 

= - -2  × (684(/C1)) + 384(/CI)  + 2 × (2C1(/C1)) 

= 84(/C1) (65) 

This result is identical with the corresponding element of Table 3. 
On the other hand, the multiplicity vector gives the USCI for T/(/C3v) ~ S4 from 

the data in the S4-column of Table 2, 

6X(--½) 83xl 2X½ 84 X X 84 = 84 (66) 

This result is identical with the corresponding element of Table 4. 
The procedures are based on eq. 63. This fact can be verified: eq. 63 for the 

present example is calculated to be 

Wd(/C3v) I 84 : 

Td(/C1) ,L S4 
1 0 1 Td(/C2) ~" s4 

Td(/C,) 1 S4 
(--~, , 1, ~,0) Td(/C3) I S4 

Td(/S4) ~ 54 

,L El ,~ c2  ~.s4 
6 0 0 
2 2 0 
3 0 0 
2 0 0 
1 0 2 

= (1,0,0) (67) 

[] 

The treatment concerning eqs. 59 and 60 can be extended into a general case, 
in which G( /G0  is replaced by a markaracter P = (xl, x2 , . . . ,  xs). This extention 
shall be discussed for the new formulation of combinatorial enumeration in the next 
section. 
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3.3. Combinatorial enumeration 

Consider a skeleton with n positions, which belongs to point group G. The group G 
has a non-redundant set of dominant subgroups, 

SCSGG = {G1, G2 , . . . ,  Gs}. (68) 

The positions are characterized by a permutation representation P (n = [P[) with a 
markaracter, P = (61, fi2,... ,~8). This vector generates a multiplicity vector, A = 
(~1, ~2 , . . . ,  ~ ) ,  by solving a set of linear equations, 

X N - I  
= PM G . (69) 

The multiplicity vector corresponds to 

8 

= Z ~,G(/Gi).  (70) P 
i=1 

Let us consider isomers based on the skeleton with n ligands selected from a ligand 
set: 

X = { X l , X 2 , . . .  , X v } .  (71) 

Then, our problem is to obtain the number (Ao) of isomers with formula: 

y01 y02  Ov 
Wo = "'1 "~n "'" X v  , (72)  

where [0] represents a partition: 

[0] " 01 + 0 2 + . . . + 0 v  = n .  (73) 

In order to apply the present formulation to combinatorial enumeration, we define 
a cycle index: 

Cl(G;sd3k) : ~__ ~ j ,  ~ Z(G(/G0.L Gj;sdjk) 
j=l  i=1 x 

j=l i=1 i=1 

(74) 
j=l 

where the power j3~ ) is represented by 

8 

/3~ )= ~ 8i¢/(k ij). (75) 
i=1 

The CI can be proved to be identical with the counterpart described in Definition 
16.2 in Ref. [7], because the monomials concerning non-cyclic subgroups vanish 
in the previous formulation. Hence, Theorem 16.1 in Ref. [7] holds in the present 
formulation, i.e. 
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Theorem 5. A generaing function for the total number of isomers is represented by 

y ~  AoWo = CI(G; Sdjk), (76) 
[0] 

where the right-hand side is substituted by ligand inventories, 

8 d j  k = ~ g  • 

~=1 

(77) 

This theorem is based on the cyclic subgroups of G while Theorem 16.1 in Ref. [7] 
takes account of cyclic and non-cyclic subgroups of G. However, these two theorems 
are equivalent to each other. This fact reveals an important role of cyclic subgroups 
in combinatorial enumeration. Both Theorem 5 (based on dominant USCI tables) 
and Theorem 16.1 in Ref. [7] (based on USCI tables) are alternative formulations 
of the Redfield-Prlya theorem (based on cycle structures of respective elements), as 
illustrated in the following example. 

L) 

Fig. 1. Five Diaza-adamantanes 

Example 7. Let us consider an adamantane skeleton in which we take account of 
four bridgehead and six bridge positions. These positions are substituted by C or 
N to produce polyaza-adamantanes. The total 10 positions are characterized by a 

1~ -1 markaracter (10, 2, 4, 1,0), which is multiplied by the inverse ( xd ), i.e., 

----1 1 2 1  
(10,2,4, 1,0)M,rd = (--1, 2 '  ' ~,0). (78) 

The orbit index of this multiplicity vector is calculated to be Z~ = -1  + 1 +2+ 1 +0 = 2. 
By using the data of Table 2, eq. 74 for this example is obtained, i.e., 
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f = C I ( T d ; S d )  

1 24x(-1)+12x½+12x2+8x½ 1 4x½ 12x(-1)+4x½+6x2+4-x½ 
- 24sl  + g81 82 

1 2X2 12X(-1)+6X½+5x2+ax½ l 2X½ 8X(--I)+4x{+ax2+2X½ 
83 

1 2x{ 6x(-1)+2x½+3x2+2x½ 
+ 4 82 84 

_ 1 Sl 0 1 2 4 +  lS4  3 1 3 1 2 
-- ~ 1 + -~8182 ~ 182 + 58183 + "48284 (79) 

A ligand inventory is obtained to be 

8 d = C d + N d, (80) 

which is introduced into eq. 79. 

f = I ( C +  N ) I ° +  ~ ( C +  N)2(C2 + N2)4+  ] ( C +  N)4(C2 + N2) 3 

+ ~ ( C  + N ) ( C  3 + N3) 3 + ~-(C 2 + N2) (C  4 + N4) 2 
/ 

= C l° + 2 C 9 N + 5 C 8 N  2+ l l C T N  3 + 1 7 C 6 N  24 + . . .  + N  1° (81) 

For illustrating this enumeration, Fig. 1 shows five diaza-adamantans corresponding 
to the coefficient of the term C 8 N  2. 

4. C o n c l u s i o n  

The elements of a markaracter table of a cyclic group are evaluated by using the 
orders of  its subgroups. A group G of finite order is characterized by the corresponding 
markaracter table which is constructed with respect to dominant representations (DRs) 
corresponding to cyclic subgroups (defined as dominant subgroups). The markaracter 
table is proved to involve an essential set of  subdominant markaracter tables which 
are related to a set of markaracter tables for the dominant subgroups by using a 
magnification set involving diagonal matrices. The subduction of DRs is obtained 
by staring the markaracter table. Thereby, we have a dominant subduction table and 
a dominant USCI (unit-subduced cycle index) table for the group G. The dominant 
USCI table is used to evaluate a cycle index and applied to combinatorial enumeration. 
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